 index.htm André Joyce Fan Club   |   GAMES   |   Chi Xi Digamma   |   Googology   |   Hierogonometry   |   Jootsy Calculus   |   links   |   Merology   |   neologisms   |   Oogology   |   Pataphysics   |   Sequences   Oogology translated by Razilee Purdue C1978-2003 Hierogamous Enterprises    It had only been in 1915 when P. E. B. Jourdain translated and so popularized Georg Cantor's work with transfinite numbers (such as aleph-zero and aleph-one) and only 1963 when B. S. Johnson defined the square root of aleph-one. In 1972 when John Horton Conway discovered surreal numbers (see Mpossibilities 31:4) mathematics changed. Undefined terms suddenly were definable. The number of kinds of infinities increased more than infinitely.    Making use of the computerese (and roulette) 00 (double zero) for the older "lazy eight" designation, for the first inaccessible number and the equally familiar computerese, \ (backslash), for ciscendentals, nfinities, nrationals, rrationals (Mpossibilities 68:1) seems to make surreal mathematics easier by an aleph-nullth [That's a word you probably don't see every day.]   Here're other surreals anglicized from Transfini Mathematiques pur Surreel Amateurs de Rôles Muet by Andre Joyce: . . . 00.1 = 00 + .1 = 1\1 [read as "one conquered by one" (as opposed to "divided by" from phrase "divide and conquer"), or "one under one"] . . . 001 = 00 + 1 = 10\1 . . . 002 = 00 + 2 = 5\1 . . . 003 = 00 + 3 = 10\3 . . . 012486374987513625012486374987513625 = 19\10 . . . 03193712565968062874340319371256596806287434 = 23\10 . . . 032967032967 = 13\10 . . . 06287434031937125659680628743403193712565968 = 23\20 . . . 329670329670 = 13\1 . . . 331 = (G(2, 00, 10) - 1)/3 -2 = 15\2 . . . 33 = (G(2, 00, 10) - 1)/3 = 3\1 . . . 335 =  3\1 + 2 = 15\8 . . . 337 = 3\1 + 4 = 15\11 . . . 967032967032 = 13\3 . . . 96806287434031937125659680628743403193712565 = 23\13 . . . 987513625012486374987513625012486374 = 19\9 2\2 = 2(00) + 0.2 4\4 = (2\2)(2\2) = G(2, 2, (2(00) + .2)) 5\5 = 5(00) + 0.5 7\7 = 7)00) + 0.7 8\8 = (2\2)(2\2)(2\2) = G(2, 3, (2(00) + .2)) . . . 99001 = G(2, 00, 10) - 999 = oogol-im . . . 99501 = G(2, 00, 10) - 499 = oogol-id . . . 9901 = G(2, 00, 10) - 99 = oogol-ic . . . 9951 = G(2, 00, 10) -49 = oogol-il . . . 991 = G(2, 00, 10) - 9 = oogol-ix . . . 996 = G(2, 00, 10) - 4 = oogol-iv . . . 998 = G(2, 00, 10) - 2 = oogol-ij . . . 99 = G(2, 00, 10) - 1 = 3\3 = oogol-i [pronounced "ooh-gaul-ee"]                  first angelic number     (number ending in infinite number of zeroes) 100. . . 00 = G(2, 00, 10) = oogol [G(2, 100, 10):G(2, 00, 10)::googol:?] 100. . . 001 = G(2, 00, 10) + 1 = 10`1 = oogoli [pronounced "ooh-golly"] 100. . . 002 = G(2, 00, 10) + 2 = 5 1 = oogolij G(2, 00, G(2, 10, 10)) = G(2, 00, G(3, 2, 10)) = oogolplex G(3, 00, 10) = goloo [googol:golgoo::oogol:?] for more see Let Us Remember Andre Joyce 